- 1) Find the vertex of the parabola with equation $y = 2 x^2 + 8 x + 7$.
- 2) Find the maximum y-value of the parabola with equation $y = -4 x^2 4 x + 5$
- 3) Find the minimum y-value of the parabola with equation $y = \frac{1}{4} x^2 x 3$
- 4) Find the y-intercept of the parabola with equation $y = -3(x-4)^2 + 9$
- 5) Find the x-intercept(s) of the parabola with equation $y = \frac{1}{2} x^2 x 12$
- 6) What is the axis of symmetry for the parabola with equation $y = x^2 4x + 9$
- 7) What are the end behaviors of the graph of the polynomial $P(x) = -x^5 + 6x^3 7x^2 + 11x + 9$?
- 8) Find the zeros of the polynomial P(x) = $x^5 13x^4 + 30x^3$
- 9) Find the vertical asymptote(s) of $y = \frac{6 x^2 24}{3 x^2 9 x}$
- 10) Find the horizontal asymptote of $y = \frac{24 x 12 x^2}{3 x^2 9}$
- 11) Find the x-intercept(s) of $y = \frac{8-2 x^2}{x^2-9}$

- 12) Find the y-intercept of $y = \frac{4 x^2 16}{8 x^2}$
- 13) Y varies directly as the fourth root of X. When X = 16, Y = 10. What is the value of Y when X = 81?
- 14) Your score on the next exam varies inversely to the number of dates you have before the next exam. If you have 6 dates before the next, exam, you will make a 40% on the exam. What will you make on the exam if you just have 2 dates?
- 15) Write each of the following in logarithmic form:

a)
$$12^{-x} = y$$

b)
$$(T) = 3^{-Y}$$

16) Write each of the following in exponential form:

a)
$$\ln (7x+3) = Y$$

b)
$$\log x = 13$$

17) Evaluate each of the following logarithms:

a)
$$\log_b \sqrt{b^5} =$$

b)
$$\log_3 \frac{1}{81} =$$

c)
$$\ln \frac{1}{e} =$$

e)
$$10^{\log 20} =$$

f)
$$\log_{\frac{1}{2}} 16 =$$

18) Expand:
$$\ln \left(\frac{7 t^{14} \sqrt[3]{y^{13}}}{x \sqrt{n}} \right)$$

19) Write as one logarithm:
$$\frac{3}{2} \log x - \log y + \frac{1}{3} \log z - \log 22 - 5 \log m$$

- 20) Find the horizontal asymptote and y intercept for the graph of $y = 3^{x+2} + 5$
- 21) Find the vertical asymptote and x intercept for the graph of $y = \ln \left(\frac{1}{4} x 2 \right)$
- 22) Find the domain of $y = 5 \log_8 (\frac{1}{3} x 5) + 2$
- 23) Find the domain of $y = \frac{4}{\ln(2x-4)}$
- 24) Write as one logarithm:
 - a) 3 ln 2 2 ln 3
- b) $\frac{1}{2} \ln 9 \frac{2}{3} \ln 8$
- 25) Find the range of $y = 2(7^{-x}) + 6$
- 26) Solve each of the following for the variable x:

a)
$$y = \frac{1}{2} \log_6 (3 x - 9)$$
 b) $y = e^{2 x + 4} - 11$

b)
$$y = e^{2x+4} - 11$$

- 27) If I invested \$20000 into an account paying $8\frac{1}{2}\%$ interest compounded monthly, how much would be in the account after 25 years?
- 28) If I invested \$9000 into an account paying 5% interest compounded continuously, how much would be in the account after 12 years?
- 29) Solve each of the following for x:

a)
$$4^{2x+1} = 8^{x-5}$$

b)
$$3^{2-5x} = 7^{x+3}$$

- 30) If I invested \$2000 into an account at 6% interest compounded continuously, how long would it take the account to triple my money?
- 31) If $\log_b X = 0.78$ and $\log_b Y = 1.2$, then evaluate $\log_b X^3 \sqrt{Y}$
- 32) What is the inverse of the function $f(x) = 3 \log_8 (x-4) + 11$?
- 33) Find the value of x to the nearest tenth in each of the following:

a)
$$5^{x+2} = 500$$

b)
$$x = 4^{\log_{\frac{1}{2}} 16}$$

34)
$$\log_{\frac{1}{k}} \sqrt{k} = ??$$
 if $k > 1$.